

Florence HeriTech 2020. 14-16 October

ADAM MICKIEWICZ

UNIVERSITY Poznań

The RESEARCH project. Soil-related hazards and archaeological heritage in the challenge of climate change

Stefano De Angeli (1), Fabiana Battistin (1), Matteo Serpetti (2), Alessio Di Iorio (2),

Federico Valerio Moresi (1)

Alma Sistemi s.r.i.

1.

2.

Cyprus

University of

<u>`echnoloav</u>

Università degli Studi della Tuscia, p.le dell'Università s.n.c., 01100 Viterbo, Italy ALMA SISTEMI Srl, via della tenuta del Cavaliere 1, Building B, ooo12 Guidonia, Roma, Italy

Observed changes in duration of warm spells in summer (left) and frequency of frost days in winter (right in the period 1976–2006

Days per decade - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 9 10

Archaeological Heritage, naturally endangered by environmental processes and anthropogenic pressures, is today increasingly at risk, because of intense human activities and climate change, and their impact on atmosphere and soil.

Example of flood in Sibary, Calabria, Italy (source: La Repubblica, February 2014).

Example of urban sprawl in Nea Paphos, Cyprus (April 2017).

PRIMARY FACTORS	SECONDARY FACTORS		In 2008 afte	er a 2-year consultation		PRIMARY FACTORS	SEC
Buildings and Development	Housing Commercial development Industrial areas Major visitor accommodation and associated infrastructure		process with natural and cu Heritage Comm	experts in both fields of Itural heritage, the World hittee adopted a standard	1	Other human activities	Ille Del Mil Wa Ter
Transportation Infrastructure	Ground transport infrastructure Air transport infrastructure Marine transport infrastructure Effects arising from use of transportation infrastructure Underground transport infrastructure Water infrastructure		Universal Va (source: <u>https://</u>	affecting the Outstanding alue of World Heritage Properties. <u>/whc.unesco.org/en/factors/</u>) See also:		Climate change and severe weather events	Sto Flo Dro De Chi Ter Otl
Infrastructure	Renewable energy facilities Non-renewable energy facilities Localised utilities Major linear utilities	X	UNESCO, World H Change and V	Heritage Reports n°22- Climate Norld Heritage, May 2007).		Sudden ecological o geological events	r Vol Ear Tsu Ava
Pollution	Pollution of marine waters Ground water pollution Surface water pollution Air pollution Solid waste Input of excess energy		PRIMARY FACTORS Local conditions affecting physical fabric	SECONDARY FACTORS Wind Relative humidity Temperature Radiation/light Dust		Invasive/alien species or hyper- abundant species	Erc Fire Tra Inv Inv
Biological resource use/modification	Fishing/collecting aquatic resources Aquaculture Land conversion Livestock farming/grazing of domesticated animals		Social/cultural uses	Water (Rain/Water table) Pests Micro-organisms Ritual/spiritual/religious and associative		Management and institutional factors	Hyj Mc Ma Leg
Crop produ Commercia Subsistence Commercia Subsistence Forestry /w	Crop production Commercial wild plant collection Subsistence wild plant collection Commercial hunting Subsistence hunting Forestry /wood production	op production mmercial wild plant collection osistence wild plant collection mmercial hunting osistence hunting restry /wood production	of heritage	Society's valuing of heritage Indigenous hunting, gathering and collecting Changes in traditional ways of life and knowledge system Identity, social cohesion, changes in local			act Go Hig act Ma Fin
Physical resource extraction	Mining/ Quarrying Oil and gas / Water extraction			population and community Impacts of tourism/visitor/recreation		Other factor(s)	Hu

Florence HeriTech 2020. 14-16 October

er human vities	Illegal activities Deliberate destruction of heritage Military training War Terrorism Civil unrest
ate change and re weather nts	Storms Flooding Drought Desertification Changes to oceanic waters Temperature change Other climate change impacts
den ecological or ogical events	Volcanic eruption Earthquake Tsunami/tidal wave Avalanche / landslide Erosion and siltation/deposition Fire (wildfires)
sive/alien ies or hyper- ndant species	Translocated species Invasive/alien terrestrial species Invasive / alien freshwater species Invasive/alien marine species Hyper-abundant species Modified genetic material
agement and tutional factors	Management System/Management Plan Legal framework Low impact research/monitoring activities Governance High impact research/monitoring activities Management activities Financial resources Human resources

RF SE ARCH

REMOTE **SE**NSING TECHNIQUES FOR **ARCH**AEOLOGY

Official web-site: <u>www.re-se-arch.eu</u> Facebook: <u>https://www.facebook.com/Research-</u> Remote-Sensing-techniques-for-Archaeology

Florence HeriTech 2020. 14-16 October

European Commission Horizon 2020 European Union funding for Research & Innovation

Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE)

Project RESEARCH (*REmote SEnsing techniques for ARCHaeology,* 2018-2022) developed a risk assessment procedure for monitoring and evaluating risk for archaeological heritage coming from:

- Land movement
- Soil erosion
- Land use/cover change

The assessment will be possible by combining different types of environmental and archaeological data, mostly produced by remote sensing technologies.

The methodology will be applied by a specifically designed WebGIS Platform.

The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

(H2020-MSCA-RISE grant agreement No 823987).

Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE)

RESEARCH case studies

Case Study		Land Movement	Soil Erosion	Land Use Change	
	ITALY	Falerii Novi	х	Х	х
	CYPRUS	Amathous	Х	х	Х
	GREECE	Almiriotiki		Х	
		Vaitsi Mill			Х
		Itanos	Х		
	POLAND	Darłowo –			V
		monastery			^
		Cisowo		Х	Х
		Dzierżęcin		Х	Х

Project consortium

Università degli Studi della Tuscia (UNITUS, Viterbo, It) coordinator

Geosystems Hellas it kai Efarmogesgeopliroforiako n Systimaton Anonimietaireia (GSH, Athina, Gr) RESEARCH will coordinate the existing expertise and research efforts of seven beneficiaries into a synergetic plan of collaborations and exchanges of personnel (PhD students and research staff), to offer a comprehensive transfer of knowledge and training environment for the researchers in the specific area.

Alma Sistemi Srl (ALMA, Roma, It)

Foundation for Research and Technology Hellas (FORTH, Heraklion, Gr)

Space Systems Solutions Ltd (S3, Nicosia, Cy) Cyprus University of Technology

Technologiko Panepistimio Kyprou (CUT, Lemesos, Cy)

Adam Mickiewicz University Poznań

Uniwersytet Im. Adama Mickiewicza W Poznaniu (AMU, Poznan, PL)

and Innovation Staff Exchange (

Florence HeriTech 2020. 14-16 October

First year project activities

- Definition of risk assessment methodology
- State of the art of land movement data processing chain (WP1)
- State of the art of soil erosion data processing chain (WP2)
- State of the art of land use/change data processing chain (WP3)
- Selection of case studies
- Definition of scientific requirements of the Platform (WP7)
- Definition of user requirements of the Platform (WP7)

The activities have been conducted in synergy with all the Partners and were supported by the possibility of staff exchange allowed by the funding frame MSCA-RISE

ch and Innovation Staff Exchange (BISE

Florence HeriTech 2020. 14-16 October

Risk assessment methodology

RESEARCH risk assessment methodology take its moves from the definition of risk as a product of hazard, vulnerability, and exposure.

R = H * V * E

Hazards: anything (tangible or intangible) that can cause harm to some assets, considered in its magnitude and spatial and temporal aspects (it is the same of <u>risk source</u>, every element which alone or in combination has the intrinsic potential to give rise to risk).

Exposure: what is exposed to a given hazard (asset=something we value and want to preserve. Important types of assets are humans, the environment, material or financial assets, cultural heritage).

<u>Vulnerability</u>: the intrinsic properties of something resulting in susceptibility to a risk source that can lead to an event with a consequence. the aspects of the exposed elements that made them vulnerable to a given hazard.

Florence HeriTech 2020. 14-16 October

Land movement hazard assessment

Land movements are natural phenomena influenced by geological and environmental conditions. They typically occur along hillsides and mountains and can naturally happen or being the consequence of human actions. The phenomena can occur suddenly or very slowly, depending on the characteristics of both the area and the hazardous event. Land movements can impact on AH by damaging and destroying standing and buried structures, as well as archaeological stratigraphy.

Differential SAR interferometry (D-InSAR) and Persistent Scatterer Interferometry (PSI) methods are used to assess the stability of the ground and identify ground motion caused by processes as subsidence and landslides at, and near, archaeological sites.

FOR ARCHAFOLOGY

Florence HeriTech 2020. 14-16 October

Soil erosion hazard assessment

Soil erosion is the natural phenomenon of soil loss manly due to water runoff and wind. The process can be accelerated and intensified by climate change and human activities. Soil erosion can impact in different ways on the archaeological features exposed to it, in particular archaeological deposits because, when soil is eroded, the effective soil thickness above them, that represent a protection, is reduced.

SE estimation models (RUSLE, SIMWE, USPED) will be applied, by taking into account specific parameters such as rainfall factor, topography and land cover management. Multispectral satellite images of high spatial resolution will be analysed simultaneously with high resolution Digital Elevation Model (DEM). Remote Sensing and GIS will be integrated in order to estimate long-term average annual soil loss and accumulation.

Florence HeriTech 2020. 14-16 October

Land use/cover change hazard assessment

Beside local environmental conditions and climate change, most of the factors potentially dangerous for AH are related to intensive land use and land use changes. AH preservation can be threatened, in fact, by urban sprawl, building and mining activities, pollution, agriculture and pasture related activities, which all imply physical impacts influencing the preservation of archaeological records.

Categories of land use/land cover, defined specifically for each test case, will be studied for the monitoring of important changes in a given span of time. In order to conduct these analyses, satellite and aerial images (multispectral and hyperspectral), terrain attributes, and data collected in field investigation will be used.

Vulnerability and exposure of AH

VULNERABILITY (CONCEPT)

AH can be said to be vulnerable by definition. The vulnerability ranking is based on the more or less ascertained archaeological value of detected features.

EXPOSURE (CONCEPT)

In theory, the presence of archaeological features, effective or supposed, implies always a high exposure level.

(standard value assigned = 1)

RESEARCH VULERABILITY (RANKING)

Archaeological feature type	Description	Method of identification	Vulnerability Rating
No evidence			None
Soil/Crop/Shadow marks	Visible differencies/anomalies on the soil surface (colour/vegetation growth/topography), possibly corresponding to buried, superficial or also disappeared archaeological features not yet verified through other techniques)	Aerial/satellite observation	Low
Surface archaeological material (in association or not with Soil/Crop/Shadow marks)	Areas presenting dispersion of archaeological material on soil surface (possibly corresponding to buried arch. features not yet verified)	Field walking survey	Medium
Buried/unburied structures, including earthworks (in association or not with Surface archaeological material)	Visible structures and buried structures and stratigraphy.	Visible or identifiable through geophysical survey or archaeological excavation	High

Iarie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE)

Exposure of buiried AH to soil erosion

EXPOSURE (CONCEPT)

In respect to soil erosion, the exposure of buried features follows the principle that as much as a preserved archaeological context is buried deep, the more it is protected from superficial erosion of soil. Wherever the burial depth of the archaeological deposit is known, it can be applied a coefficient able to represent the differences in the exposure of the features, that reduce the final risk level. Given a maximum exposure 1, the gradient will be comprised between, 0.01 (corresponding to the deeper structures surveyed using geophysics) and 0.99 (indicating the structures visible on the surface or very close to it).

EXPOSURE INDEX

Burial depth of structure	Reduction Index	First vulnerability rating class of index application	Vulnerability rating in respect to Soil Erosion
≥ 0 cm	1	3	3
-10 cm	0,97	3	2,91
-20 cm	0,94	3	2,82
-30 cm	0,91	3	2,73
-40 cm	0,88	3	2,64
-50 cm	0,85	3	2,55
-60 cm	0,82	3	2,46
-70 cm	0,79	3	2,37
-80 cm	0,76	3	2,28
-90 cm	0,73	3	2,19
-100 cm	0,70	3	2,10
		Fir	est draft of RESEAR

First draft of RESEARCH exposure index (February 2020).

Research and Innovation Staff Exchange (BISE

Florence HeriTech 2020. 14-16 October

RESEARCH (Web)GIS Platform

The **RESEARCH System** is intended as the combination of the external data processing chains for soil- related threats assessment and archaeological features mapping, the archaeological database, and the **WebGIS Platform**, composed by the GIS Desktop Platform and the WebGIS Portal. The System has been designed on the base of the methodology adopted, elaborated by the authors of this contribution and described above. In particular the GIS Desktop Platform is thought to be used to transform the products of external data processing chains first in hazard, vulnerability and exposure maps (intermediate products), and then in risk maps (final products), by combining hazard and vulnerability maps.

The Platform is at the moment under development.

The processes synthetized in the scheme on the right exemplify the scientific requirements of the Platform, while on a technical base, the aim is to increase process automation as much as possible.

First draft of RESEARCH system:work flow and platform (February 2020).

Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE)

Risk assessment

The GIS Desktop Platform will transform land movement, soil erosion, and land use/cover change maps in proper Hazard maps (Land Movement, Soil Erosion, and Land use/cover Change Hazard Maps) through the application of specific hazard values. The GIS Desktop Platform will transform maps of archaeological features in Vulnerability maps by the application of the vulnerability ranking.

The GIS Desktop Platform will apply to any archaeological features an exposure value = 1. In the case of Archaeological deposits, wherever depth realted information will be available (i.e. GPR data), the exposure index will be applied $(0,01 \rightarrow 0,99)$

h and Innovation Staff Exchange (BIS

Florence HeriTech 2020. 14-16 October

The WebGIS Portal will showcase:

- the opensource input data used in data processing chains and related intermediate output data (Land Movement Maps, Soil Erosion Maps, Land use/cover Change Maps, and Archaeological Features Maps);
- the primary data produced by the GIS Desktop Platform for the elaboration of *Exposure Map for Soil Erosion* (*Buried Archaeological Layer*, *Buried Features Exposure Maps*);
- the intermediate products (Land Movement Hazard Maps, Soil Erosion Hazard Maps, Land use/cover Change Hazard Maps, the related Archaeological Vulnerability Maps, and the Exposure Map for Soil Erosion) produced by the GIS Desktop Platform;
- final products (Land Movement Risk Maps, Soil Erosion Risk Maps, Land use/cover Change Risk Maps) produced by the GIS Desktop Platform.

ch and Innovation Staff Exchange (BIS

Florence HeriTech 2020. 14-16 October

Final remarks

This contribution aimed at presenting the results of the first year of Project RESEARCH, in particular:

- definition of the risk assessment methodology, and the related requirements of the RESEARCH GIS Platform;
- the study of the state of the art about soil related threats and their assessment, and the design of data processing chains.

Future activities

- completing data collection, partners will proceed with the application of hazards assement (data processing chains) and production of intermediate output data
- mapping and cataloguing of archaeological features
- Completing and testing the Platform
- Field validation activites

FOR APCHAEOLOGY

All these activities will be carried on as much as possible through secondments.

Florence HeriTech 2020. 14-16 October

ADAM MICKIEWICZ

UNIVERSITY Poznań

GEO

Thank you for your interest.

If you want to know more about RESEARCH project, please visit our web-site

www.re-se-arch.eu

or feel free to contact us.

Alma Sistemi s.r.ı.

